Mini-CAT EBM Final Project

Khizra Shafiq, Nikita Narsingh, Anannya Dey, Anja Glumicic

Clinical Scenario

Moshe, a 4 year old patient with strep throat will need to be treated with antibiotics. Last time he was on antibiotics he developed diarrhea. His mother wonders whether taking probiotics will lessen the chance of diarrhea developing. What can you tell her?

Do probiotics decrease the likelihood of antibiotic associated diarrhea in pediatric patients?

PICO Search Terms

Population	Intervention	Comparison	Outcome
Pediatric patients taking antibiotics	Probiotics	No probiotics	Lower incidence of antibiotic associated diarrhea
Pediatric patients		Placebo	Decreased antibiotic associated diarrhea

Summary of Search Strategy

Terms searched:

- Antibiotic associated diarrhea
- Probiotic usage in prevention antibiotic associated diarrhea
- Pediatric antibiotic associated diarrhea
- Probiotics to prevent pediatric antibiotic associated diarrhea

Databases used:

- PubMed
- Google Scholar
- Cochrane Library

#articles retrieved:

- 223 (PubMed)
- 19,300 (Google Scholar)
- 3 (Cochrane)

List of the 4-5 articles chosen to appraise

- Probiotics for the prevention of pediatric antibiotic-associated diarrhea: A systematic review
 - Qin Guo, Joshua Z Goldenberg, Claire Humphrey, Regina El Dib, Bradley C Johnston
- Can probiotic yogurt prevent diarrhea in children on antibiotics? A double-blind, randomized, placebo-controlled study
 - Michael J Fox, Kiran D K Ahuja, lain K Robertson, Madeleine J Ball, Rajaraman D Eri
- Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis
 - Sara Blaabjerg, Daniel Maribo Artzi, and Rune Aabenhus
- Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea
 - Susanne Hempel, Sydne J Newberry, Alicia R Maher, Zhen Wang, Jeremy N V Miles, Roberta Shanman, Breanne Johnsen, Paul G Shekelle

Probiotics for the prevention of pediatric

antibiotic associated diarrhea: A systematic review

<u>Criteria:</u>

- 0-18 years old
- Compared **33** studies

Looked at:

- Randomized, parallel and controlled trials with children
 - Receiving antibiotic treatment **alone**
 - receiving antibiotics **with** probiotics
 - receiving antibiotics with placebo
 - Notable **side effects** were also studied of probiotics
- Studies were obtained from MEDLINE, Embase, CENTRAL, CINAHL and Web of Science
- The **incidence of AAD** in the **probiotic group** versus the **control groups** were studied across the 33 studies

Results

- Analyses showed statistically significant results that probiotics are effective for preventing AAD. The incidence overall in the probiotic group was 8% compared to 19% in the control group.
- A subgroup analysis found that a high dose >5 billion CFUs per day is more effective than a low probiotic dose → incidence of AAD in probiotic group was 8% compared to 23% in the control group.
- None of the 24 trials (4415 participants) that reported on adverse events reported **any serious adverse events** attributable to probiotics

Thoughts:

- Aggregate data meta-analysis does not allow the SR to fully explore participants (e.g. sex) and intervention level variables (# of abx prescribed)
- Greater duration of study could be useful

Comparison: Control (placebo or non-active control)

Outcomes	Anticipated	absolute effects * (9	95% CI)	Relative	No of	Quality of the	Comments	
	Baseline risk	Corresponding risk		effect (95% CI)	Participants (studies)	evidence (GRADE)		
	Risk in	Risk with						
	Control	Probiotics	Risk Difference					
			104 fewer AAD					
			cases per 1000	RR 0.45				
Incidence of AAD	190 per	86 per 1000	(84 fewer to 122	(0.36 to	6352	$\oplus \oplus \oplus \ominus$		
Follow-up: 5 days to 12 weeks	1000 ¹	(68 to 106)	fewer)	0.56)	(33 studies)	Moderate ^{2.3.4}		
Incidence of AAD: Probiotic	190 per	70 per 1000		RR 0.37	4038	$\oplus \oplus \oplus \ominus$	Based on our a priori subgroup	
dose (\geq 5 billion CFUs of	1000^{1}	(57 to 87)		(0.30 to	(20 studies)	Moderate ^{5.6}	analyses, high-dose probiotics (≥ 5	
probiotics/day)				0.46)			billion CFUs/day) are most effective	
Follow-up: 5 days to 12 weeks							Low dose probiotics (<5 billion	
			120 fewer AAD				CFUs of probiotics per day) were	
			cases per 1000				not as effective as high dose	
			(103 fewer to)				probiotics (RR 0.68, 95% CI 0.46 to	
			155 lewer)				1.01; low certainty evidence)	
Adverse events	55 per	39 per 1000	16 fewer adverse	RD -0.00 (-	4415			
Follow-up: 5 days to 4 weeks	10007	(25 to 61)	events per 1000	0.01 to 0.01)	(24 studies)	Low ^{6.9.10.11}		
			(6 more to 30					
			fewer)					
Duration of diarrhea (days)		MD 0.91 fewer			1263	$\oplus \oplus \Theta \Theta$		
Follow-up: 10 days to 12 weeks		(1.38 fewer to			(8 studies)	Low ^{12.13}		
		0.44 fewer)						

Can probiotic yogurt prevent diarrhea in children on antibiotics?

<u>Criteria</u>:

70 children (aged 1-12) randomly assigned to the placebo or probiotic group (36 placebo and 34 probiotic).

<u>Methods:</u>

This was a multisite, **randomized, double-blind, placebo-controlled clinical trial**.

Procedures:

Children were prescribed antibiotics and given **200 g/day** of either probiotic yogurt containing LGG, La-5 and Bb-12 or a placebo. The primary outcome was **stool frequency and consistency**, classified at different levels of diarrhea **severity**.

Findings:

In **all classifications of diarrhea**, there were significantly **fewer incidences** in children given a probiotic rich yogurt in comparison to children on a placebo yogurt.

A yogurt combination of **LGG**, **La-5 and Bb-12** is an effective method for reducing the incidence of antibiotic-associated diarrhea in children.

Limitations:

The study relied on **self reported data** by the parents or children – so children at school may have had less complete recording.

The effects on stool were only recorded for the **duration of the antibiotic treatment** + 1 week – so there may have been other incidences that were not recorded. This time frame was chosen because AAD usually begins in the **first 2 weeks** of beginning antibiotic treatment.

Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients—A Systematic Review and Meta-Analysis

- This meta-analysis and systematic review used **PubMed** and included **17** Randomized control trials with **3631 participants**.
- Patient population consisted of all age and was restricted to **outpatient** taking oral antibiotics.
 - Seven of the trials targeted **children specifically.**
- All included studies were prospective, randomized, controlled trials with placebo, active, or no treatment control arms.

	Probiot	lics	Contr	ol		Risk Ratio		Risk Ratio	-
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI	C
2.7.1 L. rhamnosus GG									
Arvola et al., 1999	3	61	9	58	4.6%	0.32 [0.09, 1.11]	1999		
Vanderhoof et al., 1999	7	93	25	95	10.6%	0.29 [0.13, 0.63]	1999		
Subtotal (95% CI)		154		153	15.1%	0.29 [0.15, 0.57]		◆	
Total events	10		34						
Heterogeneity: Tau ² = 0.0	00; Chi [≠] = 0	0.02, df	= 1 (P =	0.89); F	²=0%				
Test for overall effect: Z =	3.59 (P =	0.0003	0						
2.7.2 S. boulardii									
Erdeve et al., 2004	7	127	12	105	8.5%	0.48 [0.20, 1.18]	2004		
Erdeve et al., 2004	7	117	30	117	10.7%	0.23 [0.11, 0.51]	2004		
Duman et al., 2005	14	204	28	185	16.1%	0.45 [0.25, 0.83]	2005		
Cindoruk et al., 2007	9	62	19	62	12.6%	0.47 [0.23, 0.96]	2007		
Zojaji et al., 2013	11	80	24	80	14.8%	0.46 [0.24, 0.87]	2013		
Subtotal (95% CI)		590		549	62.7%	0.41 [0.30, 0.57]		•	
Total events	48		113						
Heterogeneity: Tau ² = 0.0	00; Chi ² = 3	2.52, df	= 4 (P =	0.64); F	² = 0%				
Test for overall effect Z =	5.45 (P <	0.0000	1)						
2.7.3 L. acidophilus La-5	+ B. lacti	s Bb-12	2						
De Vrese et al., 2011	4	30	3	29	3.7%	1.29 [0.32, 5.26]	2011		
Chatterjee et al., 2013	19	198	26	198	18.5%	0.73 [0.42, 1.28]	2013		
Subtotal (95% CI)		228		227	22.2%	0.79 [0.47, 1.33]		-	
Total events	23		29						
Heterogeneity: Tau ² = 0.0	0; Chi* = 1	0.54, df	= 1 (P =	0.46); F	² = 0%				
Test for overall effect Z =	0.89 (P =	0.37)							
Total (95% CI)		972		929	100.0%	0.45 [0.34, 0.60]		•	
Total events	81		176						
Heterogeneity: Tau ² = 0.0	3; Chi ² = !	9.41, df	= 8 (P =	0.31); F	²=15%				100
Test for overall effect Z =	5.59 (P <	0.0000	1)					U.U1 U.1 1 1U	100
Test for subgroup differe	nces: Chi ^a	= 6.30	. df = 2 (F	P = 0.04	 I² = 68. 	2%		ravours (problotics) ravours (control)	

Key findings:

<u>Results</u>: Use of probiotics produced a statistically significant reduction in the incidence of AAD.

- AAD was present in 8.0% of the probiotic groups compared to 17.7% in the control groups.
- No significant risk of adverse events in the probiotic group.

Limitations:

- Overall quality of the included studies was **moderate**.
 - Only **18%** of the included studies had a **low risk of bias**, and these studies did not find a statistical significant reduction in the prevention of AAD.
- Half the studies did not provide placebo to the control group
- Definition of diarrhea varied among studies or unspecified

Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea

<u>Criteria</u>: Participants of **all ages** treated with antibiotics, **regardless of the indication** and the patients' underlying symptomatology.

<u>Methods</u>: **Meta-analysis** and **systematic review**; 63 RCTs, which included **11,811 participants**. Twelve electronic databases were searched (DARE, Cochrane Library of Systematic Reviews, CENTRAL, PubMed, EMBASE, CINAHL, AMED, MANTIS, TOXLINE, ToxFILE, NTIS, and AGRICOLA).

<u>Outcomes studied</u>:

- All reports of diarrhea were considered (adverse effects, dropouts).
- The primary outcome was the number of participants with diarrhea in each treatment group.

Key Findings

- Using probiotics as adjunct therapy reduces the risk of AAD. The result was consistent across a number of subgroup and sensitivity analyses.
- The number of participants experiencing AAD was lower in the probiotics groups than in control groups.

Limitations:

- Poor documentation of the **probiotic strains** (mostly *Lactobacillus*).
- Residual **unexplained heterogeneity** (difference in response to treatment among individuals/subgroups).
 - Evidence is insufficient to determine whether this association varies systematically by population, antibiotic characteristic, or probiotic preparation.

Clinical Bottom Line

After appraising each of the articles we found that:

- Probiotics are generally effective at **decreasing** the incidence of antibiotic associated diarrhea.
- Probiotics were generally not associated with **any major adverse effects** and demonstrated **protective effects** over other antibiotic associated side effects (abdominal pain, vomiting, headache).
- LGG, La-5 and Bb-12 are three strains of probiotics that are effective in reducing the incidence of antibiotic-associated diarrhea in children.

However...

- Further research needs to document which **specific** strains of probiotics help prevent antibiotic associated diarrhea.
- 2. Establish **one definition** of diarrhea among all studies.
- 3. Provide placebo probiotic to the control group.
- 4. Establish a post-antibiotic treatment time frame to study the incidence of diarrhea.

Blaabjerg S, Artzi DM, Aabenhus R. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients-A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2017;6(4):21. Published 2017 Oct 12. doi:10.3390/antibiotics6040021

Fox MJ, Ahuja KD, Robertson IK, Ball MJ, Eri RD. Can probiotic yogurt prevent diarrhea in children on antibiotics? A double-blind, randomized, placebo-controlled study. BMJ Open. 2015;5(1):e006474. Published 2015 Jan 14. doi:10.1136/bmjopen-2014-006474

Guo Q, Goldenberg JZ, Humphrey C, El Dib R, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. The Cochrane database of systematic reviews. April 30, 2019. Accessed November 19, 2023. <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6490796/</u>.

Hempel S. Probiotics for the Prevention and Treatment of Antibiotic-Associated Diarrhea: A Systematic Review and. JAMA. 2012;307(18):1959-1969. doi:10.1001/jama.2012.3507

